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On the basis of the system of differential equations in partial derivatives, the boundary-value problem of heat
and mass transfer under cooling of flowing water sheets by a turbulent air counterflow has been formulated.
Its approximate analytical solution is given. From the point of view of the accepted model of interaction of
flows, it has been shown that the obtained theoretical values of the heat and mass transfer coefficients are in
good agreement with the experiment.

The heat and mass transfer between liquid and gas flows is widely used in technology and is of great impor-
tance for solving many energy and ecological problems: cooling and heating of gases and liquids in various heaters
and contact heat exchangers, air conditioning, circulating water supply of enterprises, etc. The case of water cooling
after the heat-exchangers at thermal and nuclear power stations in cooling towers using a large quantity of water and
having considerable sizes occupies a special place.

Despite the fact that cooling towers have been used for a long time, the mechanism of the processes proceed-
ing in them is still not clearly understood. The state of the calculation of these processes is given in [1]. Analysis of
the calculating techniques shows that they are based on considerable simplifications. At best, the authors go from three
equations in partial derivatives describing the joint processes of heat and mass transfer to the three ordinary differential
equations first used in the 1930s by Proskuryakov. But in the majority of cases even simpler approaches (Merkel’s
method and its modification and, in particular, Berman’s method [2]) are used. The employment of these methods
leads to the necessity of using empirical relations for the heat and mass coefficients or, in the most simplified form
— to volume coefficients. Usually, one volume coefficient is used and the second one is found from the analogy be-
tween the processes of heat and mass transfer by the Lewis equation. Such approaches do not provide complete infor-
mation about the process. For instance, on the basis of the numerical solution of ordinary differential equations, in [3]
the heat and mass transfer under heating of laminar flowing water films by a turbulent hot gas flow in contact heat
exchangers and in [4] evaporative cooling of flowing-down films at a laminar flow of phases in cooling towers were
considered.

The most characteristic and effective regimes of water–air interaction in cooling towers is the counterflow re-
gime in general and the film regime for a liquid. And the liquid flow thereby occurs under laminar-wave conditions,
which provides the maximum residence time of the liquid in the contact zone of its cooling.

The elementary cell of the liquid–gas interaction represents a vertical (or slightly deviated from vertical) flat
surface (packing) by which the water flows in a thin sheet and the air goes up, contacting at the interface the liquid
and cooling it. In so doing, the air is heated and humidified due to the water evaporation. Of greatest practical impor-
tance is the turbulent air flow. The maximum air-flow rates in cooling towers are 4–5 m/sec, which corresponds to the
conditions of weak hydrodynamic action [5]. Under these conditions, the hydrodynamic parameters of the film are
practically independent of the turbulent gas flow and remain the same as at a free flow of films. On the contrary, the
gas hydrodynamics through the velocity profile strongly depends on the characteristics of the liquid film. The above
conditions are observed at an average velocity of the gas of up to 7–8 m/sec; at a larger velocity the flooding regime
arises and then an upward counterflow of the liquid film appears under the action of the shear stress on the side of
the gas. In so doing, the hydrodynamic and thermal parameters of the film strongly depend on the gas parameters.
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Let us formulate the boundary-value problem for the heat and mass transfer under the following assumptions:
we neglect the diffusion heat conduction, the thermal diffusion, and the transverse flow of the mass because of their
smallness; the physical properties of the water and the air are constant because of their small temperature change; the
film surface is flat.

The coordinate system was chosen so that its origin is at the film–gas interface, the x-axes for the film and
the gas are directed towards each other and are related by the relation xg = l − x1, and the y-axes are directed, respec-
tively, to the liquid film and the gas phase. Then the heat and mass transfer in the system "laminar water film–turbu-
lent air counterflow" in the approximation of the boundary layer can be described by differential equations in partial
derivatives in the conjugate formulation:

for the heat transfer in the flowing film

u 
∂t

∂x
 = a 

∂2
t

∂y
2
 , (1)

for the heat transfer in the turbulent gas flow

ρgcpgug0 
∂T
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 = 

∂
∂yg

 


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(λg + λt,g) 

∂T

∂yg




 , (2)

and the mass transfer in the gas

ug0 
∂C

∂xg
 = 

∂
∂yg

 



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∂C

∂yg




 , (3)

which should satisfy the following initial and boundary conditions:

x = 0 ,     t = tin ,

x = l ,     T = Tin ,   C = Cin ;

y = δ ,     
∂t

∂y
 = 0 ;

y = h − δ ,   
∂T

∂yg
 = 

∂C

∂yg
 = 0 ;

y = 0 ,     t = T = ti ,   C = Ci ,   qliq = qg + rmv .

(4)

According to the last condition in (4), the thermal flow from the film at the interface is formed by the flow due to
the convection to the gas and the heat of evaporation of the liquid.

At the interface, an equilibrium vapor concentration Ci at a given pressure is attained:

Ci = f (ti) . (5)

In the general case, the function f in (5) is nonlinear. Thus, the system of equations (1)–(3) with conditions (4) and
(5) is interrelated and nonlinear.

The solution of Eq. (1) for a laminar flow with constant boundary conditions and an arbitrary velocity profile
u in the film (e.g., a parabolic one) is given in [6]. For a turbulent liquid flow the solution is complicated. Note also
that the problem should be solved in two phases where their output characteristics are not known in advance and are
to be determined in the process of solution. Strictly speaking, one should add to the system of equations (1)–(3) the
equations describing the hydrodynamics of the air counterflow interacting with the liquid film. However, this is impos-
sible because of the lack of adequate data on the conditions of the interaction of the flows at the interface and a rig-
orous theory of turbulence (the more so for a two-phase flow). Therefore, for the velocity profile in Eqs. (2) and (3),
the semiempirical data taking into account the interaction of the liquid and gas flows will be used.
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The aim of the present investigation is to obtain more detailed information about the process of heat and mass
transfer, compare the theoretical and experimental values of the heat and mass-transfer coefficients, and elucidate the
influence of the waves on the film surface.

On going to dimensionless coordinates by the relations

u = ui (1 − η2) ,   η = 
y

δ
 ,   ξ = 

x
δ

 
1

Pef
 ,   Pef = 1.5RefPr ,   Ref = 

uavδ
ν

 ,

ui = 1.5uav ,   uav = 3
−1 ⁄ 3 (νg)1

 ⁄ 3 Ref
2 ⁄ 3 = 0.693 (νg)1

 ⁄ 3 Ref
2 ⁄ 3 ,   Ref < 400

Eq. (1) transforms to the form

(1 − η2) 
∂t

∂ξ
 = 

∂2
t

∂η2 , (6)

where a parabolic velocity profile in the liquid film is used.
To solve Eqs. (2) and (3), one should know the laws of change in the velocity ug0 and the turbulent heat

conductivity λt,g and diffusion Dt coefficients. In general, the gas flow moves relative to the film surface at a mean
velocity u

_
g0 = u

_
g + ui. The hydrodynamic parameters of the gas strongly depend on the characteristics of the liquid

film, which affects the velocity profiles in the gas and the friction drag [7, 8]. With increasing spray density the de-
gree of filling of the velocity profiles decreases compared to the flow in smooth pipes; they "elongate" and become
similar to the profiles of the laminar flow or the non-Newtonian liquid flow.

According to [7], the velocity profiles of the turbulent gas flow can be described fairly exactly by the power
law

ug0

ug0max
 = 





1.1y

h − δ




s

 , (7)

where

s = 0.85 √λ0  . (8)

The exponent s increases with increasing spray density and decreases with increasing Reg0 and s > 1 ⁄ 7, and
the drag coefficient for the channel being sprayed in (8) is determined according to [8] by the Darcy–Weisbach for-
mula

∆p = λ0 
lρgu

_
g0
 2

8 (h − δ)
 .

For the laminar-wave liquid flow (7.5 ≤ Ref ≤ 400), the dependence

λ − λ0
′

λ0
′

 = 4.385⋅10
−3

 Ref
2 ⁄ 3 (9)

has been found. The drag coefficient for the smooth pipe λ0
′  is determined by the Blasius formula.

The value of the maximum velocity on the channel axis is obtained from the relation

ug0max − u
_

g0

u
_

g0
 = 1.44 √λ0  , (10)
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and the wavelength-mean (or effective) velocity of the liquid film surface layer ui is found by the data of [9].
Formulas (7)–(10) completely describe the velocity profile of the gas phase. It should be noted that in the

known works the change in this velocity profile under interaction with the running-down liquid film is ignored.
If we introduce into (2) and (3) the dimensionless quantities

ηg = 
y

h − δ
 ,   ξg = 

xg

Peg (h − δ)
,

Peg = 
1.1

s
 ug0max (h − δ)

ag
 = Reg0maxPrg ,   Reg0max = 

1.1
s
 ug0max (h − δ)

νg
 ,

then on the usual going to the turbulent viscosity they will be rewritten as follows:
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 . (12)

To write the expression for the turbulent viscosity, we make use of the Millionshchikov model, which is of
interest because of its relative simplicity, consistency, and the possibility of obtaining analytical relations for the heat-
exchange characteristics in explicit form. As was shown in [6], the application of this model and its generalizations in
various cases of heat exchange (without the phase transition, with evaporation, under the action of the shear stress on
the side of the gas) provides a good agreement between calculated and experimental data. A detailed analysis of the
more complex models is also given in [6].

Let us write the dependences for νt
 ⁄ ν in the form

νt

ν
 = 0 ,               ηg < 

7.8

h
+
 − δ+ ;

νt

ν
 = 0.39 (1 − ηg) [ηg (h+

 − δ+) − 7.8] ,     
7.8

h
+
 − δ+

 ≤ ηg ≤ 1 ,

(13)

where h+ = hVg0
 ⁄ νg, δ+ = δVg0

 ⁄ νg are, respectively, the dimensionless half-width and thickness of the film; Vg0 is the
dynamic gas velocity (Vg0 = ug0 √λ0

 ⁄ 8 ); and the coefficient 7.8 is the dimensionless thickness of the viscous sublayer.
Relation (13) takes into account the turbulence damping as the free surface is approached, which agrees with

the current notions. In dependences (11) and (12), in view of (13) the mean value of Prt = Prd,t = 0.9 throughout the
gas layer thickness is assumed.

The values of the Pr and Prd numbers in (11) and (12) for the gas phase are of interest. For instance, while
for dry air the value of Pr = 0.722 is constant, for humid air on the saturation line at temperatures of 0–50oC it
smoothly increases from 0.72 to 0.79. For the most important temperature range 30–40oC, one can assume the value
of Pr = 0.75, which is average for it. On the contrary, the Prd number in the 0–70oC range remains practically con-
stant and equal to 0.62. The diffusion coefficient of water vapors D depending on the temperature is determined by
the formula of Fuller et al. [10], which is the most reliable formula of the known ones:

D = 

2⋅10
−7⋅T1.75

 


1
Mw

 + 
1

Mair





0.5

p (12.7
1 ⁄ 3 + 20.1

1 ⁄ 3)2
 ,
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where p is the pressure, atm; Mw and Mair are, respectively, the molecular weight of the water and the air. Thus, the
mean Lewis number Le = Prd/Pr = 0.62/0.75 = 0.83, which points to the absence of strict analogy between the proc-
esses of heat and mass transfer in the gas phase usually taken in calculations.

Now all functions and parameters entering into Eqs. (6), (11), and (12) have been determined. For their
unique solution, one has to know the changes in the temperature at the interface and in the equilibrium concentration
Ci that are related by the third boundary condition in (4).

In the present paper, we use the approach based on the approximate solutions of Eqs. (6), (11), and (12) at
constant values of ti and Ci with subsequent use of the superposition method (Duhamel theorem in heat conduction),
since these equations are linear. We find their approximate solution under constant boundary conditions of the first
kind by the two-parameter integral method described in detail in [6]. In this monograph, a high efficiency and an ac-
curacy of the method comparable to the accuracy of the best numerical and available exact methods was shown with
many examples of solving linear and nonlinear boundary-value problems for boundary conditions of the I–IV kinds
under laminar and turbulent liquid flows. However, as opposed to the latter, the advantage of this method is the fact
that it permits obtaining analytical solutions in closed form.

Let us first turn to the dimensionless temperatures and concentration. For Eq. (6) we introduce t∗  = 
t − tin
ti − tin

,

where tin is the temperature of the inflowing hot water, and for (11) and (12) — T∗ = 
T − Tin

Ti − Tin
 and C∗ = 

C − Cin

Ci − Cin
,

where Tin and Cin are, respectively, the temperature of the inflowing cold air and the initial concentration of vapor in

it. If we omit the sign * in the dimensionless temperatures and concentration, then Eqs. (6), (11), and (12) will pre-
serve their form, and we shall write the boundary conditions as

t (0, η) = 0 ,   t (ξ, 0) = 1 ,   ∂t (ξ, 1) ⁄ ∂η = 0 . (14)

Analogous conditions are also written for Eqs. (11) and (12) upon replacement of t by T or C.
Consider sequentially the solutions of Eqs. (6), (11), and (12) under the boundary conditions (14). The solu-

tion of problem (6), (14) is given in [6] with the example of mass transfer (pp. 199–205). Therefore, we give here
only the finite dependences for the thermal initial and stabilized regions of the heat exchange. The dimensionless tem-
perature profiles in these regions of the heat exchange are found in the form

t = (1 − η ⁄ q)
n1 ,   t = (1 − t2) (1 − η)n2 + t2 , (15)

where q is the dimensionless thickness of the thermal boundary layer; t2 is the dimensionless temperature on the solid
wall; n1 and n2 are the profile parameters (degrees). The dependences of q, n1, n2, and t2 are determined in the proc-
ess of solving the problem of two equations. One of them is the first integral of Eq. (6) and the second one is ob-
tained by multiplying (6) by t and integrating it within the thermal boundary layer. All substantiations of the method
are given in [6], and the detailed procedure of finding q, n1, n2, and t2 is described in [11] with the example of the
heat exchange in a flowing liquid film in the thermal initial region under boundary conditions of the second kind.

As a result, it has been found that for the first and second regions of heat exchange n1 = n2 = 1.8 can be
assumed. Then for q and t2 we have the following explicit relations:

q = 3.175ξ1 ⁄ 2 + 0.261ξ3 ⁄ 2 ,

t2 = 1 − exp [− 5.162 (ξ − ξ1)] , (16)

where ξ1 is the dimensionless length of the thermal initial region, i.e., the ξ value at q = 1. From (16) we find
that ξ1 = 0.0976. Let us estimate the length of the thermal region in the physical variables for tav = 30oC, Pr =
5.42 at the maximum density of the laminar-wave flow, i.e., at Ref = 400. Then Pe = 3252, δ = 1.44(ν ⁄ g)1 ⁄ 3, ν
= 0.81⋅10−6 m2/sec, δ = 0.4307⋅10−3 m, and x1 = ξ1δPe = 0.137 m. The local and mean Nusselt numbers are de-
termined by the relations
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Nu = − 
∂t (ξ, 0)

∂η
 (1 − tav)

−1
 ,   Nu

___
 = 

1
ξ

 ∫ 
0

ξ

Nu dξ . (17)

Adequate substitutions yield the following dependences:

Nu1 = 
1.8
q

 [1 − 0.536q + 0.0587q
3
]
−1

 ,

Nu
___

1 = − 
0.667

ξ
 ln [1 − 0.536q + 0.0587q

3
] = 4.434 ,

Nuwall = 3.442 ,   Nu
___

2 = 
4.434⋅0.0976 + 3.442 (ξ − 0.0976)

ξ
 ,   ξ > ξ1 .

(18)

Estimating the value of the film-to-air heat-transfer coefficient for limiting Nuwall =  3 .442 = αδ ⁄ λ, under the
above conditions we have α = 4.939⋅103 W/(m2⋅oC). Likewise, we obtain the solution of problem (11), (14) in the
thermal initial and stabilized regions of the heat exchange, where the temperature profiles T are also sought in the
form of (15).

Details of the solution method for the case of the heat exchange of the turbulent flowing liquid film under
boundary conditions of the first and second kinds can be found in [6, 12, 13]. As a result, for the thermal initial re-
gion it has been found that n1 = 1.7578 at q ≤ 7.8/(h+ − δ+) (laminar viscous sublayer), and for the region of
7.8/(h+ − δ+) < q ≤ 1 we have obtained the equation

(n1 + 2) [(n1 (1 − s) + 1 − s ⁄ 2]

2 (2n1 + 1) [n1 (1 − s) + 2 − s]
 = ψ (n1, q) ,

where

ψ (n1, q) = 
n1 − 1

2n1 − 1
 − bn1q 




(h+

 − δ+
 + 7.8) 





ϕ2n1−1

2n1 − 1
 − 

ϕ2n1

2n1




 −

− (h+
 − δ+) q 





ϕ2n1−1

2n1 − 1
 − 

ϕ2n1

n1
 + 

ϕ2n1+1

2n1 + 1




 − 

7.8ϕ2n1−1

2n1 − 1




 ;

b = 0.433Pr ;   ϕ = 1 − 
7.8

q (h+
 − δ+)

 
1

q
 .

(19)

With increasing q the function ϕ approaches unity, which considerably simplifies the calculations in obtaining the pa-
rameter n1 from (19).

The dimensionless thickness of the thermal boundary layer is found by the formula

q = (A2ξg)
1

2+s ,   A2 = 
n1 (n1 + 1) (n1 + 2) (2 + s)
(1 + s) [n1 (1 − s) + (2 − s)]

 . (20)

Determining the average dimensionless temperature of air in the section as

T
__

 = 
1

u
_

g0
 ∫ 
0

1

ug0Tdηg ,   u
_

g0 = ∫ 
0

1

ηg
s
dηg = 

1
1 + s

 ,
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we find for this region

T
__

1 = 
(1 + s) [n1 (1 − s) + (2 − s)]

(n1 + 1) (n1 + 2)
 q

1+s
 . (21)

For the stabilized region the following coupling equation for the parameter n2 has been obtained:

(1 + s) (2n2 + 1) [n2 (1 − s) + 2 − s] − (1 + s) (n2 + 2) [n2 (1 − s) + 1 − s ⁄ 2]

(2n2 + 1) [(n2 + 1) (n2 + 2) − (1 + s) (2 − s)]
 =

= 
n2 − 1

2n2 − 1
 − 

b (h+
 − δ+)

2 (2n2 + 1)
 



1 − 

7.8

h
+
 − δ+





2n2+1

 . (22)

As is seen from (19) and (22), the parameters n1 and n2 depend on Reg0 through h+ − δ+ (most strongly), the
index s in the velocity profile, and the Pr number. Moreover, n1 depends on q. The exponent (s < 1 ⁄ 7), in general,
produces a small effect on the values of n1 and n2, leading to their decrease by 1% as a maximum.

The dimensionless temperature on the channel axis T2 is determined by the dependence

T2 = 1 − exp [− A3 (ξg − ξg1)] ,   A3 = 
n2

1
1 + s

 − A4

 ,

A4 = 
n2 (1 − s) + (2 − s)
(n2 + 1) (n2 + 2)

 .

(23)

The average dimensionless temperature in this region is calculated by the relation

T
__

2 = (1 + s) A4 (1 − T2) + T2 . (24)

The local Nug numbers in the first and second regions are determined by the dependences

Nu g1 = 
n1
q

 1 − A5q
1+s



−1

 , (25)

A5 = 
(1 + s) [n1 (1 − s) + (2 − s)

(n1 + 1) (n1 + 2)
 ,

Nu g,wall = 
n2

1 − A5
′
 ,   Nug = 

αg (h − δ)

λg

 , (26)

where A5 ′ is determined by analogy with A5 by replacing n1 with n2.
The mean Nu

___
g numbers in the first and second regions are calculated as follows:

Nu g1

_____
 = − 

1
(1 + s) ξg

 ln (1 − T
__

1) , (27)

Nu g2

_____
 = [Nug1

_____
 ξg1 + Nug,wall (ξ − ξg1)] ⁄ ξg , (28)

where Nu
___

g1 is the value of the mean Nu
___

g at the end of the first region.
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Finally, the solution of the mass-transfer problem (12) with boundary conditions analogous to (14) is de-
scribed by the same relations as for the heat-exchange problem (11), (14), i.e., (19)–(28). The only difference is that
now the diffusion number Prd will enter into (19) and (22) instead of the thermal number Pr, and in (20) and (23)
thereby one should use the coefficients A2/Le and A3/Le.

We emphasize that under a turbulent flow of liquids the known fact is practical independence of the Nusselt
numbers of the change in the heat-exchange surface temperature along the channel lengths [14]. In [6], this was con-
firmed for the heat exchange in a turbulent film. By analogy, the independence of the Nu numbers on the temperature
change at the interface is often used to simplify the corresponding calculations of the two-phase heat and mass trans-
fer. However, the heat and mass-transfer coefficients are not so universal, which is their great disadvantage, although
they are used in all existing computing methods for cooling towers.

Using the solutions obtained, let us make some important estimates, assuming the channel half-width h =
0.025 m and δ = 0.4307⋅10−3 m (at Ref = 400 the gas velocity u

_
g = 4 m/sec). In so doing, the velocity on the film

surface according to the experiment of [9] in the second wave laminar regime is determined by the formula

ui = 0.485 (νliqg)1
 ⁄ 34

0.6
Ref

0.6
 . (29)

For the average temperature of the liquid tav = 30oC, we obtain ui = 0.81 m/sec, the mean relative velocity of the gas
flow u

_
g0 = u

_
g + ui = 4.81 m/sec, the Reynolds number for the relative velocity Reg0 = 4u

_
g0(h − δ)/νg = 3.06⋅104, λ0

 ′

= 2.392⋅10−2, the drag coefficient at the interface is equal to λ0 − λ0
 ′ = 5.694⋅10−3, and then λ0 = 2.961⋅10−2. The dy-

namic velocity is determined as Vg0
∗  = u

_
g0 √λ0

 ⁄ 18  = 0.293 m/sec. The dimensionless half-width of the channel and the
film thickness are equal to h+ = hVg0

∗  ⁄ νg = 473.8, and δ+ = δϑg0
∗  ⁄ νg = 8.16, which constitutes 1.72% of h+. The

maximum velocity value, according to (10), is ug0max = 6.002 m/sec. The exponent value in the velocity profile, ac-
cording to (8), is s = 0.1463, i.e., 1/s = 6.837 < 7.

We consider next the stabilized regions of the heat and mass transfer in the gas phase. Let us find the main
characteristics — the parameters of profiles n2 and n2d. The input equation is (22). Using the method of successive
approximations, we obtain the following results: for the heat transfer at Prg = 0.75 n2 = 28.72, and for the mass trans-
fer at Prd = 0.62 n2d = 26.35, which is 9% lower than the value for the heat transfer. Using them, we determine the
values of Nuwall from (26): Nug,wall = 29.704, Nud,wall = 27.334.

Let us write the ratio between the thermal and diffusion Nusselt numbers in the expanded form:

Nu g,wall

Nud,wall
 = 

αgD

βgλg
 = 

αg

βg
 

D

agρgcpg
   or   

αg

βg
 = 

Nug,wall
Nu d,wall

 
Prd

Prg
 ρgcpg . (30)

Substituting into (30) concrete values of Nu and Pr, we get

αg

ρgcpg
 = 0.9βg . (31)

Thus, the difference from the known Lewis relation relating the heat-transfer coefficients αg and the mass-
transfer coefficients βg is 10% on average. Because of the different values of Pr, this difference can also reach
15–20%.

Estimating the absolute value of stabilized αg, we find αg = Nug,wallλg/(h − δ) = 31.68 W/(m2⋅oC). Determine
the length of the thermal initial region from (20), assuming q = 1 and n1 = n2. From the relation ξg = xg/(h − δ)
Peg, taking into account that Peg = Reg0max Prg = 7257, we find ξg = xg/178.3. From formula (20), we have ξg,wall =
1/A2, A2 = 1861.7. Then ξg,wall = 5.372⋅10−4, xg,wall = 178.3ξg,wall = 0.0958 m.

Thus, the length of the thermal region for a turbulent air flow is small compared to the real length of the
heat-transfer surface, measuring 3–4 m.

Of great interest is comparison between theoretical and experimental data for the heat and mass-transfer coef-
ficients assigned to the surface. Note that the running of such experiments is rather complicated and laborious and,
therefore, there have been very few. Berman [2] staged experiments under the above conditions of a turbulent air
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counterflow and a laminar flow of a water film by solid boards. The results of the experiments are presented in [2]
in the form of a diagram of the values of the mass-transfer coefficients (evaporation coefficients) βp assigned to the
partial pressure difference depending on the relative air velocity. We have performed theoretical calculations throughout
the region of turbulent air flow corresponding to the experiments (u

_
g D 1–4 m/sec). In so doing, the βp values were

taken from the graphs and transferred to the βg values assigned to the volume concentrations. A practically complete
quantitative and qualitative agreement between the theoretical and experimental data has been found. As an example,
we give the values of Nud,wall and βg for the case of t

_
 = 30oC and T = 20oC considered in the experiment for various

air velocities (Table 1). Characteristically, the dependence of βg D u
_

g0
 0.842  practically coincides with the experimental

dependence βg,exp = u
_

g0
 0.8.

Thus, the account of the main features of the process has for the first time made it possible to find the theo-
retical relations for the heat and mass-transfer coefficients corresponding to the experiment but being much more gen-
eral and informative. As would be expected, because of the small Pr numbers the influence of waves on the process
of heat and mass transfer is insignificant. This is in good agreement with the classification of the processes by the
transfer models formulated in [6].

Consider the case of heat and mass transfer where the heat flows at the interface turn out to be related by the
last equation in [4], defining the temperature ti and its change along the length of the heat-transfer surface. We shall
take into account the values of the coefficients of heat transfer from the liquid film to the gas, as well as the fact that
in industrial cooling towers the liquid is cooled in a narrow temperature range (10–12oC as a maximum), and, there-
fore, we can take ti to be equal to the liquid film surface temperature. In this connection, let us estimate the change
in the temperature across the film.

The average dimensionless temperature of the film with allowance for t2
∗ according to (16) is determined as

tav
∗

 = 1 − 0.523 exp [− 5.162 (ξ − 0.0976)] .

Let us find t2
∗ and tav

∗  at some values of the dimensionless longitudinal coordinate ξ = x/1.4017 (Table 2).
Thus, a certain nonuniformity of the temperature profile is observed approximately up to the value of x = 0.5

m. However, since the temperature pressures ti − tin and t − tin turn out to be low, the degree of supercooling of the
film surface with respect to tav is also small. The foregoing permits considering the temperature ti for the gas to be
equal to tav for the liquid and linearly changing along the length, i.e., determining it by the expression

ti = tfin + 
tin − tfin

ξgl
 ξg = tfin + a2ξg ,   a2 = 

tin − tfin
ξgl

 , (32)

where tfin is the finite temperature of the liquid; ξgl corresponds to x = l.
The equilibrium value of the concentration Ci in the 15–20oC temperature range can also be linearly related,

to a high accuracy, to the temperature

TABLE 1. Values of Nud,wall and βg for the Case of t
_
 = 30oC and T

__
 = 20oC at Various Air Velocities

u
_

g, m/sec u
_

g0, m/sec n2d Nud,wall βg⋅102, m/sec βg,exp⋅102, m/sec

1 1.81 11.38 12.366 1.23 1.193

2 2.81 16.6 17.584 1.748 1.752

3 3.81 21.525 22.509 2.23 2.37

4 4.81 26.35 27.334 2.72 2.74

TABLE 2. Values of t2
∗ and tav

∗  at Some Values of the Dimensionless Longitudinal Coordinate ξ (ξ = x/1.4017)

x, m ξ t2
∗ tav

∗

0.5 0.3567 0.7342 0.861

1.0 0.7133 0.958 0.978

2.0 1.4266 0.999 0.9995
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Ci = a3 + b3ti , (33)

where the coefficients a3 and b3 are determined from the thermodynamic tables. Substituting (32) into (33), we also
obtain a linear dependence of Ci on the longitudinal coordinate:

Ci = a4 + b4ξ2 ,   a4 = a3 + b3tfin ,   b4 = a2b3 . (34)

Using (32) and (34), we apply the superposition method to the solutions obtained above, and it is most con-
venient to apply it at once to the heat and mass gas flow densities entering into the right-hand side of (4).

As a result, we have [14]

qg = − λg 
∂T

∂yg



yg=0

 ,   mv = − D 
∂C

∂yg



yg=0

 ,

qg = − 
λg

h − δ
 
∂T

∂ηg



ηg=0

 ,   mv = − 
D

h − δ
 
∂C

∂ηg



ηg=0

 . (35)

Substituting the known expressions for the derivatives into (35), we obtain

qg = 
λg

h − δ
 







 ∫ 
0

ξg

n2 (1 − T2) (ξg − τ) 
dti
dτ

 dτ + ∆tin2 (1 − T2)






 , (36)

mv = 
D

h − δ
 







 ∫ 
0

ξg

n2g (1 − T2g) (ξg − τ) 
dCi

dτ
 dτ + ∆Cin2 (1 − T2g)







 . (37)

where τ is the integration variable: ∆ti = ti − Tin; ∆Ci = Ci − Cin; ξg is considered to be constant.
Calculate the integrals in (36) and (37) in view of (23). The equations obtained are integrated again to obtain

the total heat and mass flows along the full length, which makes it possible to find the gas temperature and humidity
at the outlet, as well as to estimate the water cooling. If it disagrees with the given value or the air humidity is higher
than the humidity upon saturation, then it is necessary to perform similar calculations with a higher gas velocity.

Thus, the proposed approach enables one to make calculations be transparent and convenient for engineering
analysis, represent them in analytical form, and consider a wide variety of cases under different initial conditions of
the air.

NOTATION

a, thermal diffusivity, m2/sec; cp, heat capacity, J/(kg⋅oC); C, local concentration of water vapor in the air,
kg/m3; D, diffusion coefficient of water vapor in the air, m2/sec; g, acceleration of gravity, m/sec2; h, channel half-
width, m; h+, dimensionless half-width of the channel; l, board length, m; Le = a/D, Lewis number; mv, mass flow of
water vapor, kg/(m2⋅sec); n1 and n2, profile parameters; Nu, Nusselt number; ∆p, pressure drop; Pe = Re Pr, Peclet
number; Pr = ν ⁄ a, Prandtl number; q, dimensionless thickness of the thermal boundary layer; r, phase-transition heat,
J/kg; Re, Reynolds number; t, local film temperature, oC; T, local air temperature, oC; u and uav, local and average
velocity of the film, m/sec; ug0, local air velocity, m/sec; u

_
g0, average relative air velocity, m/sec; V, dynamic velocity,

m/sec; x and y, longitudinal and transverse coordinates, m; α, heat-transfer coefficient, W/(m⋅oC); β, mass-transfer co-
efficient, m/sec; δ, mean film thickness; δ+, dimensionless film thickness; λ, heat-conductivity coefficient, W/(m⋅oC);
λ0 and λ0

 ′, drag coefficients of the sprayed and smooth pipe; ν, kinematic viscosity, m2/sec; ρ, density, kg/m3. Sub-
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scripts: d, diffusion; i, interface; g, gas; f, film; t, turbulent; in, initial; fin, finite; max, maximum value; bar, mean
value; av, average; v, vapor; wall, wall; exp, experimental; w, water; air, air; liq, liquid.
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